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surface n o r m a l  v. Wi th  regard  to the o r i en ta t ion  o f  
the sample  crystal  in the exper iment  we chose the 
coord ina te  set as shown in Fig. 1. We can express the 
dispers ion equa t ion  (1) explicitly: 

C~Z 3 "Jc C~z  2 -1U C~z  -3 U Cg -" O, (1 a) 

C~ = - 2 sin 3' (3 - 4 sin 2 y), 

C~ = 3[2 cos 3' (1 - 4 sin 2 3")x - kB~], 

C~ = 6 sin y (3 - 4 sin E y)x  2, 

Cg = 2 cos 3' (1 - 4 sin 2 3')x 3 - 3kB~c 2 

+ k3(B~ 3 - 3B~B 2 + 2B3); 

C~z 6 + Cb4z 4 + C~z 3 + C~z E + Cbz + Cob=0, ( lb)  

C b= - 1, 

C4 b=  - 3 [ x 2 -  kE(1 + Bo)], 

C~ = - 2 sin 7 k3m( 3 - 4 sin 2 3'), 

C~ = 3 [ -  x 4 + 2k 2(1 + B)x 2 

+ 2k 3.,, cos 3' (1 - 4 sin 2 3')x + Cb], 

C b = 6 k  3 sin y ( 3 - 4  sin 2 3')x 2, 

Co b = - x 6 + 3k2(1 + Bo)x 4 - 2k3.,, cos 3" (1 - 4 sin 2 3")x 3 

+ 3Cbx 2 + k6[(l + Bo) 3 -  3(1 + Bo)B 2 + 2 S  3] 

- k 6  + 3 k 2 C  b, 

Cb=k2{k2(1  + B o ) -  k2[(1 + Bo) 2 -  B2]}; 

C~4z4 + C~z3 + C[zE + C~z + C ~ = 0 ,  ( lc)  

C~ = 3 - 4 sin 2 3', 

C~ = 2 sin 3' [4x cos 3t + kB~ - k,,,(3 - 4 sin 2 3')], 

C~ = 2x 2 + 2 cos 3' [3km(1 - 4 sin 2 3') - kB~]x 

- [ k E (  1 + B o ) -  kEm]( 3 - 4  s in2 3') 

- 4kkmB~ sin 2 T -  k 2(Bt~ 2 - BE), 

C~ = 2 sin y (4 cos y x 3 + [kB~ + 3kin(3 - 4 sin E y) ]x  2 

+ 4 c o s  T{kk,, ,B/)-[k2(1 + B o ) - k E ] } x - C C ) ,  

C~ = - (1 - 4 sin E y )x  4 - 2 cos 3' [kB~ 

+ k i n ( 1 - 4  sin 2 y)]x3 + {[k2(1 + B 0 ) - k  2] 

x (1 - 4 sin 2 3/) - 4kkmBO cos 2 3' 

- kE(B~ 2 - BE)}x 2 + 2 cos 3/CCx 

2 2 p2 - k k,,.(Bo - BE) + k 4{BE[2B- (1 + Bo)] 

+ B~[B~(1 + B 0 ) -  2BE]}, 

CC=k{kE[B~(1 +Bo) B E] 2 , - - k , . B o - k k , , . ( B ~  2 - BE)}. 

The coo rd ina t e  x is re la ted to the angle o f  incidence 
o f  the incident  wave  by 

x(O) =km cos (60 + y) - k cos (60 + 3, + 0). 

W h e n  the incident  b e a m  is not  the ex t remely  a sym-  
metr ica l  one, the funct ion  x(O) can be expressed as 
the l inear  one 

x( O) = - ~k cos (60 + y) + kO sin (60 + 3'). 
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Abstract 

A stochast ic  model  o f  crystal  defects is i nco rpo ra t ed  
into a F o k k e r - P l a n c k  equa t ion  descr ibing dynamica l  
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X - r a y  d i f f rac t ion  f rom imperfec t  ex tended- face  
crystals.  The  F o k k e r - P l a n c k  equa t ion  is solved by 
fo rming  a set o f  complex  m o m e n t s  descr ib ing the 
reflectance f luc tua t ions  in the crystal .  This  leads to 
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an infinite set of coupled differential equations that 
are solved by neglecting high-order moments and 
numerically integrating the equations. The numerical 
solutions of X-ray rocking curves from a set of 
imperfect silicon films show excellent agreement with 
a Monte Carlo simulation and with a kinematical 
calculation away from the Bragg peak. The dynami- 
cal equations are suitable for describing Bragg dif- 
fraction from extended-face crystals containing 
defects, strain and composition variations. 

Introduction 

The dynamical theory of X-ray diffraction is 
required to properly describe the interplay between 
the incident and the diffracted wave fields in crystals. 
The Takagi-Taupin equations (Takagi, 1962, 1969; 
Taupin, 1964) usually provide the basis for calcula- 
tions of diffraction from distorted crystals. These are 
a coupled set of differential equations for the com- 
plex wave amplitudes in the crystal and can be solved 
numerically to describe diffraction from crystals con- 
taining strain, compositional variations or even dis- 
locations (Epelboin & Authier, 1983). However, the 
calculation of X-ray diffraction from crystals con- 
taining large numbers of defects is more difficult 
because of the random nature of the defects and the 
strain fields they produce. Instead, statistical theories 
have been developed (Zachariasen, 1967; Kato, 1980; 
Kulda, 1987, 1988; Becker & AI Haddad, 1990, 1992; 
see also the review in Schneider, Bouchard, Graf & 
Nagasawa, 1992) in which averages are taken over 
an ensemble of defects and which require the solu- 
tion of equations for the diffracted intensities. 

A completely different approach was taken by 
Davis (1991), by whom the problem of Bragg diffrac- 
tion from an extended-face crystal containing ran- 
domly distributed defects was transformed into a 
Fokker-Planck equation for the probability density 
describing the complex reflectance. The effect of the 
defects on the phase of the X-ray beam was treated 
in a fashion similar to the treatment of molecular 
collisions in the statistical theory of Brownian 
motion (Uhlenbeck & Ornstein, 1930). This results in 
a stochastic differential equation, known as the Lan- 
gevin equation, which is used to derive a correlation 
function for the strain fluctuations in the crystal. A 
stochastic defect model was later developed (Davis, 
1992), in which considerations of the strain and 
strain-gradient fluctuations associated with stacking 
faults and misoriented crystal grains led naturally to 
the Langevin equation. It was shown that the phase 
correlation function of Becker & A1 Haddad (1989, 
1990) was a special case of the phase-correlation 
function derived from the Langevin equation. The 
correlation function compared favourably with that 

obtained from X-ray diffraction data using a kine- 
matical theory (Davis, 1993). 

In this paper, the Fokker-Planck equation is used 
to derive an infinite set of coupled differential equa- 
tions describing dynamical diffraction from imper- 
fect crystals. By being truncated at low orders, the 
equations are integrated numerically to solve for the 
reflectivity of the imperfect crystal. A Monte Carlo 
method for the solution of diffraction problems is 
also devised. The results of calculations using the 
dynamical equations, the Monte Carlo method and 
the kinematical theory are compared. 

Theory 

The variation of the reflectance R(t) with depth t in a 
crystal can be derived from the Takagi-Taupin equa- 
tions and takes the form of a complex Riccati 
equation, 

dR/d t  = iaO(h -- 2 f iR  + X_hR2),  (1) 

where a = - zrk/yh, 1/k = A is the X-ray wavelength, 
yo and yh are the direction cosines of the transmitted 
and diffracted waves, with respect to the coordinate 
axis, Xh = C)f~ and X-h = - C(yh/Yo)X'Eh where C is 
a polarization factor and )f~ is the complex Fourier 
component of the dielectric susceptibility associated 
with reciprocal-lattice vector h. The resonance 
parameter,/3, is given by 

/3 = n2[(k~-  k2)/2k 2] - n[[h" V(h "v)/k], (2) 

where n = (1 + 2") ~/2 is the refractive index for the 
X-rays, k and kh are the wave vectors of the trans- 
mitted and diffracted waves in the crystal interior, f~h 
is the unit vector in the direction of kh and v is the 
displacement of a point in the lattice from its relaxed 
position resulting from strains in the crystal. 

The defects in the crystal disrupt the lattice and 
introduce strain fields that may extend throughout 
the entire crystal. In the following statistical descrip- 
tion of defects, these strain fields are decomposed 
into a smoothly varing component, which is the 
average of all the strains over a plane at depth t, and 
a discontinuous random component. The contri- 
bution to the resonance parameter of all continuous 
strain fields in the crystal and the average strain field 
associated with the defects, together with the first 
term on the right side of (2), is denoted (/3). The 
contribution from the random strain fluctuations 
arising from the defects is then written as /3¢(t)= 
/ 3 ( t ) -  (/3(t)) so that (/3¢(t))= 0. If the crystal con- 
tains defects that introduce discontinuities in the 
strain or the strain gradient (and hence in /3¢ and 
d/3¢/dt) and that are Gaussian distributed with zero 
mean over the plane at depth t, then it can be shown 
(Davis, 1992) that the fluctuations in the resonance 
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parameter obey a Langevin equation, 

ldfie(t)/dt + fie(t) = tr~:(t), (3) 

where l is a correlation length and tr determines the 
strength of the defects. The correlation length 
represents a characteristic distance between strain 
fluctuations, g:(t) is a Gaussian-distributed random 
variable with zero mean and 3-function correlation, 

(sr(t)sr(t + ~'))= 6(z). (4) 

According to the central-limit theorem in the theory 
of statistics, sums of independent random variables 
tend to be Gaussian distributed (see e.g. Kendall & 
Stuart, 1969), so that, provided there are a large 
number of defects, the assumption of Gaussian- 
distributed variables ~(t) is not a major limitation. 
The solution to the Langevin equation (3) leads to a 
correlation function for fie, 

(BB~(t)BB~(t + r ) ) =  v 2 e x p ( -  ]zl//), (5) 

where the variance of the distribution v 2 = tr2/21. The 
above set of equations may be considered to form 
the basis of the stochastic model of crystal defects. 

A broad X-ray beam diffracting from an extended- 
face crystal is described by the average reflectivity, 
(R 'R) .  To form this average, an explicit solution for 
R is required. Since (1) is a Riccati equation, it is not 
possible to write down the general solution for R in 
terms of integrals involving fl(t), a, ,'(h and ,t'-h when 
fi(t) is an arbitrary function of t (Forsyth, 1943; 
Brand, 1966). It is this fact that makes it difficult to 
solve problems involving dynamical X-ray diffrac- 
tion and that usually leads to rather complicated 
approximate solutions. Indeed, (1) is usually solved 
numerically (e.g. Bensoussan, Malgrange & Sauvage- 
Simkin, 1987). In the present stochastic model, fi(t) 
is not only a function of t but it is also an unknown 
function as it contains the random variable Be for 
which only the statistical properties are known, 
through (3), (4) and (5). This difficulty was overcome 
by Davis (1991), who transformed the problem so 
that R and fie were no longer treated as functions of 
t but were considered as coordinates in a three- 
dimensional space. If R = x + iy, then the reflectance 
of a crystal is determined by a density function in 
this space, u(x, y, fie; t), where t is treated as a 
parameter. For example, the mean reflectivity is 
given by 

(R*(t)R(t)) = f f f (x ~ + y2)u(x, y, fie; t) d x d y  d f e ,  
(6) 

where the integration for x and y is over the unit 
circle and that for fie is over ( -  oo, oo). Because the 
density function is normalized to unity over all 
space, it can be thought of as the probability density 
for the crystal having reflectance x + iy and a reso- 
nance parameter (fi) + fie at depth t. 

If the equation for the reflectance variation (1) 
is written in terms of real and imaginary com- 
ponents, 

d R / d t  = Vx + ivy - V, (7) 

then, together with the stochastic defect model, it can 
be shown (Davis, 1991) that the probability density 
function obeys the Fokker-Planck equation, 

Oul O t = - o( V,,u)l O x - o( Vyu)l O y + O(f eul l)l O BB ~ 

+ (o.2/212)02u/Ofl~. (8) 

In general, Fokker-Planck equations are difficult to 
solve analytically. Instead, to demonstrate the valid- 
ity of the equation, a numerical solution is sought 
based on a set of complex moments generated from 
(8). As shown below, the moments are described by 
an infinite set of coupled first-order differential equa- 
tions in t. For many applications, the set of equa- 
tions can be truncated at very low orders and still 
produce accurate results. 

To proceed, several points concerning the density 
function u are required: 

(1) For any function f o f  x, y and fie, the average 
is given by 

( f ix ,  y, fie)) = ffff(x, y, f ie)u(x ,y , f ie)dxdydf ie ,  
(9) 

where the integrals are over all space. 
(2) If f represents any polynomial in x, y and 

fie, then as x, y and fie approach their limits (i.e. the 
unit circle for x and y, -+ oo for fie) the product o f f  
and u, or of f and any derivative of u, tends to 
zero. 

(3) The average gradient of any function f ( x ,  y, 
fie) is related to the gradient of u using an integra- 
tion by parts, 

f f ff(x, y, fle)au/Ox dx  dy d f ~  

= fff[o(fu)/Ox- uOf/ox]dxdydf i¢  

= - f f f u o f / O x d x d y d B B e  

= -(Of/Ox), (10) 

where the first term in the integral is zero, by point 
(2) above. Similar equations apply for derivatives 
with respect to y and fie- Furthermore, the average 
o f f  with respect to the second derivative of u leads 
to 

f f ff(x, y, fie) 02u/ox2 dx dy dfie = (02f/3~) • (l l) 

One of the requirements of the numerical solution 
is that it reduces to the perfect-crystal case when 
there are no defects. This is ensured by use of the 
fluctuations in the reflectance 8R( t )=  R - ( R ( t ) ) ,  
where (R(t)) is the mean reflectance and 

( R ' R )  = (R*)(R) + (3R*SR).  (12) 
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The mean reflectance obeys the equation 

d(R) /d t  = i a O ( h -  2(fl)(R) + X_h(R)  2 -  2(fle6R ) 

+ x_,,(,~R:)) 
~-(V), (13) 

which depends on averages of products of fluc- 
tuations, such as ( f leSR),  which are called complex 
moments .  In the absence of defects, the moments are 
zero and the perfect-crystal equation is returned. The 
problem is to find an equation for the variation of 
these moments with depth in the crystal. For this 
purpose, consider the most general moment, 
(SR*"SRbfl~) and its derivative with respect to t, 

d( S R*~S gb f ~ ) / d t  

= f f f 6 R * " 6 R ~ O u / O t d x d y d f l e  

- f f f ( a S R * " - ' S R b f l ~ u d ( R * ) / d t  

+ b S R * a 6 R b - ~ f l ~ u d ( R ) / d t ) d x d y d f l e  

= fff,~R*a,~R~Ou/Ot d x d y d f l  e 

- a(SR* , ' - ' SRb f l~ (V*) )  

- b (6R*aSR b- ' f l~(V)),  (14) 

where the last two terms arise from the dependence 
of 8R(t)  on (R(t)). The complex function (V) is 
defined by (13). 

When the derivative of u with respect to t in (14) is 
replaced by the Fokker-Planck equation (8), 
integrals of 'spatial' derivatives of u arise. Consider 
the term involving O(Vxu)/Ox and apply (10), then 

f f f 6R*"6Rbfl~O( Vxu)/Ox dx  dy  d f  e 

= - a(6R*a-16Rbflc~ VxOR*/Ox) 

- b(SR*"rRa- ' I3~VxOR/Ox ). (15) 

Similar expressions are obtained for O(Vyu)/Oy and 
O(fleu/l)/Ofle. Note that O R / O x = O R * / O x =  1 and 
OR/Oy = -OR* /Oy  = i. The occurrence of the imagin- 
ary term with Vy allows the result to be written in 
terms of the complex function V = V~ + iVy. If (11) is 
used for the term involving 02u/Of12¢, then (14) 
becomes 

d(rR*~SRbfl~) /  dt  

= a((~R*~-lrRb/3~(V* - (V*)))  

+ b ( S R * a S R b - ' f l ~ ( V  - (V)) )  

-- (c/l)(SR*"t3Rb fl~) 

+ (o'2/2f)e(c - 1)(6R*'~6Rbfl~-2). (16) 

The term V - ( V )  can be obtained from the 
difference between (1) and (13), 

V -  (V)  = i a [ x _ h ( S R  2 -- (6R  2) + 2(R)SR) - 2(fleSR 

- ( f l eSR)  + f ie(R) + (fl)6R)]. (17) 

This is substituted into (16) and the various terms are 
expanded in a straightforward manner. Since the 
complex moments represent the diffuse scattering 
terms, let the matrix element D,bc = (SR*arRbfl~); 
then, the set of equations describing dynamical dif- 
fraction in an imperfect crystal is 

dD,,bc/ dt  = ia(bJ,,b¢ -- aJ*h,,c) -- (c/l)D.bc 

+ (¢C/2F)c(c - 1)D~b(c-2), (18) 

Jabc = g-h(2(R)D~bc + D.(a+ ,)c 

- Do2oD~(b-,)c)- 2( f l )D. .ac-  2(R)D~(b_ ,)(~+ 1) 

-- 2Dab(c+ I)+ 2Din IDa(b-l)c, (19) 

d(R)/dt = iaO(h -- 2(fl)(R) + X_h(R)  2 -- 2Do,1 

+ X-  hD020), (20) 

( R ' R )  = (R*)(R)  + D1, o. (21) 

The matrix element Jaac has been introduced 
for convenience. Since the mean fluctuations (6R*)  
= (t~R) = 0, then D~oo = Dolo = 0, always. Further- 
more, it is easily shown that Dooo = 1 and D,bc = 
D % .  

Equations (18) represent an infinite set of coupled 
differential equations. For many applications, only 
the lower-order terms in a, b and c are significant 
and, given a set of initial conditions, the equations 
can be integrated numerically. These initial condi- 
tions depend on the problem being solved. As an 
example, consider the Bragg diffraction from the 
upper face of a thin film and take the lower face as 
the coordinate origin. In this example, the equations 
(18) are integrated numerically from the lower face 
to the upper face, where the diffracted X-ray beam 
emerges. Initial conditions are therefore required at 
the lower face. Since there is no diffracted beam 
there, the reflectance and the reflectance fluctuations 
are zero, so that (R(t  = 0)) = 0 and D~b~(t = O) = O, 
provided a ~ 0 and b ;~ 0. At the lower face of the 
film, there are defects that are assumed to be 
Gaussian distributed. If the distribution is stationary, 
i.e. does not depend on t, then the terms Doo~ rep- 
resent the moments of the Gaussian distribution. In 
this case, Do0(2,_l) = 0 and Doo2, = v2"(2n)!/(2nn!), 
where n is an integer and u 2 = ~r2/2l is the variance. 
The fact that this leads to a stationary distribution 
with t can be verified by substitution into (18). 

As a means of testing the dynamical equations 
(18)-(21), a numerical simulation of X-ray diffrac- 
tion from an imperfect crystal was performed 
using a computer to randomly generate values of fie 
and to calculate the dynamical reflectance. The basis 
of this Monte  Carlo simulation is discussed below. 
Then, comparisons between the simulation, the 
dynamical equations and a kinematical solution are 
made. 
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Monte Carlo simulation 

To simulate the dynamical diffraction, the imperfect 
crystal is divided into a large stack of perfect-crystal 
slabs. Each slab has a thickness L. Since these are 
perfect, an explicit solution of (1) can be used, 

R(t) = Ro + [R(t') - Ro]exp[2iaw(t  - t')] 

x (I + [R( t ' ) -  Ro](X_h/2w) 
x {1-  e x p [ 2 i a w ( t -  t')]}) l/z, (22) 

(O "-- "4- ( B 2  - -  X_hX_h) i/2 (23) 

Ro = (,8 + to)/X-h, (24) 

where R(t') is the reflectance at t', Ro(B) is the 
reflectance of the thick perfect crystal with resonance 
parameter B and the sign of the parameter w is 
chosen so that [Rol < 1. 

The aim is to randomly select from a Gaussian 
distribution a value of Be for the lower face of the 
crystal where R(0)= 0, calculate the appriate values 
B = (fl) + B~, w and Ro and then use (22) to calcu- 
late R ( Q  at the upper surface of the first slab. Then 
another value of Bg is selected and the reflectance at 
the top of the next slab is calculated, using R(L) as 
an initial condition. This is repeated until the reflec- 
tance at the upper surface of the imperfect crystal is 
obtained. This represents one point of a statistical 
ensemble. The entire procedure is repeated many 
times and the average reflectivity ( R ' R )  is calculated. 

Although the value of Be at the lower face is 
randomly selected from a Gaussian distribution, all 
subsequent values depend on the previous values in 
accordance with the correlation length l in the crys- 
tal. For example, if the correlation length is large 
compared with L, then subsequent values of B~ will 
not differ much from the first value, i.e. they are 
correlated in some way. The correct probability dis- 
tribution for Be can be obtained from the Fokker- 
Planck equation (8) by neglecting the reflectance 
terms, yielding 

Ou/Ot = 3(Beull)/OB~ + (orE/2lE)O2u/OB~. (25) 

This represents the Ornstein-Uhlenbeck process 
(Uhlenbeck & Ornstein, 1930), which, given a value 
Beo at to, has a solution for Be at t (Risken, 1984): 

u(Be, tlB~o, to)=(Tr(cr2/l){1 - e x p [ -  2 ( t -  to)H]})-v2 

x exp [ -  {B~- B~oexp [ -  ( t -  to)/l]} 2 

x ((tr2/l){1 - e x p [ -  2 ( t -  to)HI})-']. 

(26) 

When t -  to >> l, Be becomes independent of Beo and 
is Gaussian distributed. When t - t o  << l, the distri- 
bution becomes sharply peaked about Beo. The dis- 
tribution (26) is used in conjunction with a 
pseudorandom number generator to determine the 

value of fl~ in each slab, given its value in the 
previous slab. Provided ts is not much larger than l 
and 50 slabs or more are used to represent the 
crystal, then consistent results are obtained from the 
Monte Carlo program. 

Numerical tests of the theory 

The dynamical equations for the imperfect crystal 
were solved numerically to produce rocking curves 
for a set of silicon films of various thicknesses con- 
taining defects characterized by different correlation 
lengths and defect strengths. The same defect param- 
eters were used in the Monte Carlo. program to 
provide data to compare with the results obtained 
from the dynamical equations. In addition, the kine- 
matical diffraction was also calculated using the 
procedure described by Davis (1992). This last com- 
parison is quite important because the kinematical 
method has already been used to compare the sto- 
chastic model with X-ray data from thin films 
(Davis, 1993). Although it is based on the same 
stochastic equations, the kinematical method 
involves calculations that are quite different from 
those required in the dynamical method. The kine- 
matical rocking curves should agree with the 
dynamical curves at angles well away from the Bragg 
angle, where dynamical effects are less important. 

The integrations of (18) and (20) were performed 
using an adaptive step-size fifth-order Runge-Kutta 
method employing complex arithmetic. This is a 
modification of the routine described by Press, Flan- 
nery, Teukolsky & Vetterling (1987), which monitors 
the integration errors in (R), D011, Do2o and Dllo and 
adjusts the integration step to ensure a predeter- 
mined level of accuracy. The three film thicknesses 
used in the calculation were chosen to cover a range 
of values about the dynamical extinction length for 
the silicon 111 reflection, which is about 0.75 ~m for 
X-rays of wavelength 1.54 A. Because highly im- 
perfect crystals behave kinematically, the defect 
strengths were kept small to maintain dynamical 
characteristics. Correlation lengths were chosen to 
represent the range from almost point-like defects (l 
= 0.01 lxm) to mosaic blocks (l = llxm). Ideally, the 
correlation length for point defects is 1 = 0; however, 
the third term on the right of (18) depends on 1/l, 
which diverges as l approaches zero. This term also 
makes the integrations of (18) very slow because the 
step interval cannot be much larger than 1, otherwise 
the integration errors become large. 

The data for each calculation are given in Table 1. 
The columns labelled max. a, max. b and max. c 
refer to the maximum index used in Dabc. All 
moments with indices exceeding the maxima were set 
to zero. The number of trials refers to the number of 
reflectivities used in the Monte Carlo program to 
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Table 1. Summary of  conditions used in the simu- 
lations (see text .for details) 

Film and defect da ta  

Thick-  
ness 

Figure (p,m) l (p ,m)  u 2 
1 0.5 0.01 1 × 10 ~ 2 2 2 100 0.005 
I 2 O.OI 1 × 10 -9 2 2 2 100 0.02 
1 10 0.01 1 x 10 " 3 3 3 50 0.01 
2 0.5 0.1 5 x I0 m 2 2 2 100 0.005 
2 2 0.1 5 x 10 io 2 2 2 100 0.02 
2 10 0.1 5 x 10-,0 3 3 3 100 0.02 
3 0.5 1.0 5 x 10 '~ 3 3 6 100 0.005 
3 2 1.0 5 x 10 '~ 3 3 6 100 0.05 
3 10 1.0 5x10 " 3 3 9 100 0.05 

M o n t e  Car lo  
Dynamica l  equat ions  No.  o f  

M a x . a  M a x . b  M a x . c  trials t , (p.m) 

calculate the average at each rocking angle. The last 
column gives the slab thickness, t,. The results of the 
calculations are shown in Figs. 1, 2 and 3. In most 
cases, the results from the dynamical equations (solid 
lines) show excellent agreement with the Monte 
Carlo program (points), and also with the kinemati- 
cal results (dashed lines) away from the Bragg peaks. 
Near the Bragg peaks, the kinematical reflectivities 
diverge, as expected. The divergences of the kine- 
matical results at large angles are artifacts of the 
convolution process used in the calculations. 

1 0 3  

• • • • Monte-Carlo 
- -  Dynamical 

1 0  2 - -- K i n e m a t i c a l  / ~ 

I I 

I I 

101 ~ )  

~ • m m 

, , - /  

1 0 4 1  - I 

-0.01 -0.005 0 0.005 0.01 

Rocking angle (degrees) 

Fig. 1. Compar i sons  between the results o f  the dynamical ,  kine- 
matical  and Mon te  Car lo  methods  for imperfect  silicon (111) 
films o f  var ious thicknesses for defect pa ramete r s  l = 0.01 Izm, 
u 2 = l x l O  ~. The  rocking curves for the 0.5 and the 10p, m 
films have been scaled by 0.1 and 10, respectively, to separate  
them for improved  clarity. The X-ray  wavelength was 1.54 A,. 
See Table  1 for addi t ional  informat ion.  

Discussion 

The main limitation of this dynamical method is the 
number of coupled equations required to obtain 
accurate results when the crystals are thick and the 
defect strengths or the correlation lengths are large. 
This limitation results from the use of moments to 
characterize the statistical nature of the diffraction. 
The high-order moments in /3~ characterize the 
density u(x, y,/3~; t) at large values of /3 e. These 
represent regions of the crystal with large misorien- 
tations or large strain variations. Thus, large pertur- 
bations in the reflectance introduced by strong 
defects will require many high-order moments to 
represent accurately the density and to reproduce 
accurately the rocking curve. Furthermore, the mag- 
nitude of the perfect-crystal reflectance oscillates 
with t at a frequency 2aw (the Pendell&ung effect) 
and increases as the angle of incidence deviates 
further from the Bragg angle [see (22) and (23)]. 
Likewise, high-order moments in/3 e oscillate rapidly 
and require small integration steps to minimize the 
integration errors. This slows the computations 
dramatically for incidence angles away from the 
Bragg angle. Thus, although the dynamical solution 
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Fig. 2. C o m p a r i s o n s  between the results o f  the dynamical ,  kine- 
matical  and Mon te  Car lo  methods  for imperfect  silicon (111) 
films o f  var ious thicknesses for defect pa ramete r s  / = 0.1 ~ m ,  v-" 
= 5 × 10 "L The  rocking curves for the 0.5 and the 10 p,m films 
have been scaled by 0.1 and 10, respectively, to separa te  them 
for improved  clarity. The  X-ray  wavelength was i.54 A. See 
Table  1 for addi t ional  informat ion.  
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given in terms of moments is straightforward, it is 
not necessarily the most efficient or the most appro- 
priate for computation. For example, an expansion 
using cumulants, or other functions that better 
characterize the distributions, might lead to fewer 
coupled equations and more accurate solutions. 
However, the solution in moments has demonstrated 
that the use of a density function obeying the 
Fokker-Planck equation yields results consistent 
with the Monte Carlo simulations and the kinemati- 
cal theory for extended-face crystals. This theory is 
limited only by the applicability of the stochastic 
defect model. 

The infinite set of equations (18) was terminated 
by setting all high-order moments to zero, leaving a 
small finite set to be integrated. Although this simple 
method worked well in the specific examples given, 
any finite number of moments generally constitutes a 
poor representation of a distribution (Van Kampen, 
1976). Again, this relates to the previous point con- 
cerning the number of coupled equations required 
for accurate results. A better method is to introduce 
a closure rule, which is an approximation that allows 
the higher-order moments to be expressed in terms of 

1 0 2  

10  1 

• • • • • M o n t e - C a r l o  

. . . . .  D y n a m i c a l  

. . . .  K inema t l ca t  

/ \ 

> , 1 0  ~ 

3) 

' 
-$ 
r r  10  .2 

i 

1 0  .3 
0 5 / ~ m  

10 ~ .,.- 
10 .5 

-0.010 °0.005 0.000 0.005 0.010 

Rocking angle (degrees) 

Fig. 3. Comparisons between the results of  the dynamical, kine- 
matical and Monte Carlo methods for imperfect sil icon (111) 
films of  various thicknesses for defect parameters / = 1.0 ~m,  u 2 
= 5 x 10 '~. The rocking curves for the 0.5 and the 10 I, Lm films 
have been scaled by 0.1 and 10, respectively, to separate them 
for improved clarity. The X-ray wavelength was 1.54 A. See 
Table 1 for addit ional informat ion.  

the lower-order moments such that the equations can 
be written in a finite number of terms. The difficulty 
is in finding an approximation that does not com- 
promise the accuracy of the solution. This requires 
specific knowledge of the problem being solved. 

As discussed above, the computation time 
increases as the angle of incidence shifts away from 
the Bragg angle. As an example, the calculation time 
per point for the 10 ~m film in Fig. 3 was 430 s at 
0 - 0B = 0.01 ° but was 54 s at the Bragg angle (using 
a PC486 desk-top computer and allowing 1% inte- 
gration errors). This should be compared with the 
kinematical calculation, which takes less than 1 s to 
compute the entire rocking curve. A more practical 
approach to X-ray diffraction from imperfect crys- 
tals is to use the kinematical method to calculate the 
rocking curve and to supplement this with dynamical 
equations where the kinematical results diverge 
about the Bragg peak. 

Although the dynamical equations have only been 
demonstrated for homogeneous imperfect films, they 
are applicable to films that contain both composi- 
tional and strain variations, i.e. when Xh(t), X_h(t) 
and (fl(t)) are functions of t. For example, the 
equations may be used to model the diffraction of 
X-rays from imperfect strained-layer superlattices or 
for investigating diffraction from surface-damaged 
ion-implanted semiconductors. 

Summary 
A stochastic model of crystal defects has been 
incorporated into a theory for dynamical X-ray dif- 
fraction using a Fokker-Planck equation. The 
defects are assumed to cause Gaussian-distributed 
and independent fluctuations in the strain and strain 
gradients in the crystal. This gives rise to a Langevin 
equation, which, together with an equation for the 
crystal reflectance, leads to a Fokker-Planck equa- 
tion for a density function describing the probability 
of finding a particular reflectance in the crystal. The 
Fokker-Planck equation is solved by the formation 
of a set of complex moments describing the reflec- 
tance fluctuations. This yields an infinite set of 
coupled differential equations for the reflectance in 
the imperfect crystal. The equations are solved by 
neglecting high-order moments and numerically 
integrating the equations. The results for X-ray dif- 
fraction from a set of silicon films showed excellent 
agreement with a Monte Carlo simulation and a 
kinematical calculation. 

While the solution in moments has demonstrated 
that the Fokker-Planck equation is consistent with 
the Monte Carlo simulation and the kinematical 
theory, further work is required to find solutions that 
enable fast computation. The dynamical equations 
based on moments are suitable for describing diffrac- 
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tion from extended-face crystals containing defects, 
strain and compositional variations. The most prac- 
tical application of the equations is to supplement 
the results of kinematical calculations near the Bragg 
angle. 
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Abstract 

Seven specimens of Bi2Sr2(Cam_ xPrx)Cu208, ~ ceram- 
ics in the concentration range 0 < x < 0.64 have been 
prepared by solid-state reaction. The sample with x 
= 0.16 was examined in detail by means of electron 
diffraction and an intensity distribution of lattice 
reflections in reciprocal space was constructed on the 
basis of the experimental results. The intensity distri- 
bution is consistent with a calculation using a long- 
period modulated-structure (LPMS) model. This 
model with b = 37bo takes the (3,1)5 mode of lattice 
modulation having the modulation period 2.31b0 
(1.25 nm). The period is defined as the reciprocal of 
the wave number of a satellite reflection. The speci- 
mens with other concentrations also showed an 
intensity distribution of lattice reflections similar to 
that of x = 0.16. On the basis of the above results, 
lattice modulation periods have been examined for 
all the prepared specimens. The period decreases 
roughly from - 1.28 to - 1.15 nm with increasing 
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concentration x. Seven modulation modes of the 
lattice have been determined by high-resolution 
observation; the modulation period of the LPMS 
model with each modulation mode is also nearly 
equal to the measured period. 

1. Introduction 

The superconducting ceramic Bi2Sr2CaCu2Os)~ has 
large lattice modulations along the b and c axes. Its 
basic structure is of the Bi4Ti30,2 type with repeat bo 
(Fig. 1), having an orthorhombic lattice of unit-cell 
dimensions a = ao, b = bo and c = co (ao --- b o -  0.54 
and Co = 3 nm). The lattice constants are taken as ao 
= 2~/2a,, bo = 21/2at and Co = 2ct, where at and ct rep- 
resent the values of the Bi4Ti30~2-type structure. 

The modulated structure has been intensively 
investigated by electron diffraction and high- 
resolution electron microscopy by Shaw, Shivashan- 
kar, La Placa, Cuomo, McGuire, Roy, Kelleher & 
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